
Practical use of KTL keywords: 2010 edition

Kyle Lanclos, William T.S. Deich
UCO/Lick Observatory

University of California at Santa Cruz, CA 95064 USA
http://www.ucolick.org

May 8, 2014

Abstract

The Keck Task Library (KTL) is an applica-
tion programming interface (API) widely used
at Keck Observatory and Lick Observatory. The
essential goal of KTL is to simplify and stan-
dardize the mechanism used to acquire metadata
from unique sources. For example, a spectro-
graph motor control mechanism, weather moni-
toring service, and dome pointing system could
all provide access to unique data via KTL; a sin-
gle client, or multiple clients, could then access
that data strictly via the KTL API, without nec-
essarily knowing any of the internal mechanisms
used to produce the data in the first place.
This paper discusses the practical uses for

KTL in the context of software intended for
long-term use by diverse group of end-users and
developers. What benefits does KTL provide?
What classes of problems are optimally solved
via KTL? How should the use of KTL be inte-
grated with other communication mechanisms?

1 What is KTL?

The technical details and layout of the KTL
API are described in several other publications.

For the purposes of this discussion, KTL pro-
vides a standardized mechanism to read out
and/or modify information, encapsulated as key-
word/value pairs. The API limits itself to
the following fundamental data types: integers,
floating point numbers, and strings of charac-
ters. In addition, there are a handful of derived
types: arrays of both numeric types, enumerated
integers, integer masks, and boolean values.

There is no native support for binary blobs.
One workaround is to transmit blobs as base64-
encoded strings. Besides the immediate hit on
performance and efficiency, there are message
size limitations deep inside some (many) of the
KTL implementations that preclude the trans-
mission of values in excess of four kilobytes.

All keyword values have binary (native
type) and ASCII (string) representations, with
binary-to-ASCII translation provided by rou-
tines internal to the KTL client library. This
flexibility allows for arbitrary human-readable
output for a given keyword; for example, tele-
scope pointing keywords may be transmitted in
radians as their binary form, but the human
readable ASCII formatting may be sexagesimal
(HH:MM:SS).

KTL designates the reading of values as a

1

read operation; the modification of a value is a
write operation. These are commonly referred
to by the command-line tools that implement
these functions, show and modify. Both syn-
chronous and asynchronous write operations are
supported, but in general only synchronous reads
are supported. Continuous broadcasting of key-
word values is also supported. The basic messag-
ing system can be considered a publish/subscribe
model.

A software daemon that provides access to one
or more keywords is called a dispatcher. Indi-
vidual keywords are logically bundled into ser-

vices; a service may aggregate keywords from
multiple distinct dispatchers. For example, one
dispatcher may expose motor control functional-
ity, while another dispatcher communicates with
a temperature controller, but both dispatchers
could be part of the same service. Any software
that performs read or write operations on a KTL
service is referred to as a client.

The essential components and build environ-
ment for KTL are UNIX-centric, with success-
ful deployments on SunOS, Solaris, Linux, and
Mac OS X. While untested, successful builds
should be possible on FreeBSD, NetBSD, and
OpenBSD. A Windows-native build of the cur-
rent KTL architecture is not currently possible,
and there is no active development towards en-
abling this capability.

2 When to use KTL?

Two primary design goals influence how and
when to use KTL as a means to distribute in-
formation within our software environment.

2.1 Sharing live information

The most essential function of KTL in our soft-
ware environment is to provide live access to the
current state of a given system. Whether that
information is acquired asynchronously, or on a
just-in-time basis, KTL provides the framework
to inspect and modify system state.

In order to be effective, it is essential that the
dispatcher provide direct access to all of the data
points that need to be manipulated by a client
application. In general, if a given dispatcher has
access to information, there will eventually be a
client application that wants or needs to see it.

Similarly, it is important to expose as much
of this information as possible via KTL, rather
than a secondary communication mechanism.
For example: if the dispatcher and the client
share common state data that is written to a
temporary file, or to a SQL database, that infor-
mation should instead be exposed via a keyword,
or via multiple keywords.

2.2 Compute state on the dispatcher

In order to maintain consistency across all lis-
tening clients, it is vital that any computation
of state be performed by the dispatcher. If a
client computes desirable state internally, it will
be difficult (or impossible) to reliably share that
information with other running clients. Addi-
tionally, if the client is computing a key piece of
information, you may find yourself in a position
where the client has to be running in order to ex-
press the full meaning of the keywords provided
within a service.

2

3 When not to use KTL?

There are situations where it is not necessarily
sensible for information to be shared via key-
words. Three classes of content are typically
not shared via keywords within our environment:
application and server logs, configuration files,
and camera images.
The primary goal for logging is typically to

allow a developer to debug abnormal behavior
in the system. Any information necessary for
general operation would instead be exposed via
keywords.
Configuration files are generally required to

bootstrap the initial state of a dispatcher or
client application; a dependency on retrieving
configuration data via the network may prevent
the application in question from starting in a
sane fashion. Once running, the application
should expose or derive as much information as
possible via keywords, in order to ensure that
the exposed state is as close to possible as the
genuine state of the system(s) in question.

Camera images are generally too large to be
distributed via keywords. Instead, images are
written to a known location in the filesystem (a
location advertised via keyword), or to a shared
memory resource. If the architectural limitations
were removed such that large binary blobs could
be transmitted, it would still be necessary to de-
termine whether the underlying transport could
support enough throughput to provide the de-
sired refresh rate, for example, if one were using
keywords to distribute guide camera frames.

4 Implementing a KTL service

The KTL API itself is a very thin layer, allowing
for very different systems to be present ”under

the hood” when it comes to messaging trans-
port systems, or implementation of dispatchers.
Over the years, many different approaches have
been exercised; what is described below repre-
sents the current best practice for services de-
ployed by UCO/Lick.

4.1 Implementing a dispatcher

Will Deich wrote a middle-ware dispatcher,
stdiosvc, to handle all of the minutiae re-
quired for a dispatcher to receive requests via
KTL. Commands or requests are received by
the stdiosvc process, which translates these
requests to newline-delimited strings. Those
strings are passed to the ”real” dispatcher, which
interacts directly with the hardware; the dis-
patcher then issues newline-delimited commands
to stdiosvc that instruct it on the proper re-
sponse to the query.
Because stdiosvc operates via this thin com-

mand/response mechanism, the developer is free
to implement their dispatcher in any program-
ming language. At present, stdiosvc is in active
use with both Python and C/C++ dispatchers.
In order to maximize the effectiveness of the

dispatcher, it is important that it broadcast val-
ues as soon as is reasonable. For example, if a
client writes a new boolean value to a given key-
word, the dispatcher should immediately broad-
cast the change. For constantly fluctuating val-
ues, such as the value of a motor encoder on a
servo motor that is in motion and thus has con-
tinuously changing values, it is more sensible to
broadcast the current value on synchronous in-
tervals, such as once a second.
A dispatcher will generally provide three dis-

tinct types of keywords: direct keywords, which
directly report a specific, hardware-provided
value; derived keywords, which may reflect

3

overall system state, or some other quantity that
is computed based on one or more direct key-
words; independent keywords, which reflect
values that are computed internally by the dis-
patcher, without input from secondary sources.
In general, if a client makes a synchronous

read request for a direct keyword, the dispatcher
should acquire a current value from the hard-
ware rather than return a cached value, as long
as handling the request is within the capacity of
the hardware. Upon acquiring the new value for
the direct value, it should be broadcast; any key-
words derived from that direct keyword should
then be recomputed, and similarly broadcast.
All dispatchers should provide a set of admin-

istrative keywords, reflecting the state of the dis-
patcher itself. At a minimum, there should be a
keyword to represent the state of the dispatcher,
one or more keywords to provide detailed error
reporting for dispatcher-specific problems, and
a heartbeat keyword that a client can monitor
to determine whether it is still connected to a
running dispatcher.

4.2 Describing a service’s keywords

The current best-practice for establishing a ser-
vice’s keywords involves the creation of Extensi-
ble Markup Language (XML) files to fully doc-
ument the nature of each and every keyword in
a given service. Previous generations of tools re-
quired working with a narrow view of a database-
driven system; in addition, any input data that
diverged from the expectations of those tools
could result in unpredictable behavior. The
XML-based system aims to be completely de-
terministic in its behavior, fully descriptive, and
open to modification by any tools that can mod-
ify text files.
Beyond standard text editing, the XML is

amenable to templating for repetitive sets of key-
words. For example, the creation of keyword
XML for Galil motor control services is heav-
ily templated, such that an initial file contain-
ing fifty lines produces a five-hundred line XML
file, containing complete descriptions for nearly
fifty keywords. Because each motor stage is very
similar, and there may be more than a dozen
motor stages, this pays off very quickly: the mo-
tor control service for the current AO system on
the Shane telescope at Mt. Hamilton contains
more than 750 keywords, representing nineteen
different motor stages.

Having described the keywords, the transport
mechanism must also be defined. UCO/Lick ex-
clusively uses MUSIC messaging as our KTL
transport mechanism; the primary way that the
KTL developer must exercise this knowledge is
to define MUSIC message identification numbers
for each of the standard KTL data types. The
back-end daemon that facilitates MUSIC mes-
saging is traffic, and a configuration file must
be updated to indicate where interested clients
can locate the appropriate traffic daemon.

4.3 Example dispatchers

There are a few different dispatchers imple-
mented strictly as a tool for development. As
such, they generally do not provide any direct
or derived keywords, but instead offer only inde-
pendent keywords. Here are two examples, the
first representing a deprecated implementation
in C, and the second a more modern implemen-
tation in Python that leverages then stdiosvc

back-end:

cvs/kroot/kss/dummy

cvs/lroot/pie

4

Note that the pie service above serves as an
example for several different best practices: in
addition to the dispatcher itself, the keywords in
the pie service are fully enumerated in XML, and
the necessary subdirectories and build structure
are in place to construct a KTL client library.

A more complex example of a modern dis-
patcher is the galildisp package, which is ca-
pable of providing access to a wide range of Galil
motor control devices:

cvs/kroot/kss/optical/galildisp

5 Implementing a KTL client

Because the core KTL layer is implemented in
C, it has been adapted for use with many dif-
ferent languages. Over the years, native wrap-
pers around the KTL core were created for Tcl,
Java, and Python. In addition, because there
are command-line tools available, it is straight-
forward to invoke KTL calls from shell scripts.

5.1 Building the client-side interface

In order for a KTL service to be visible to a
KTL client, regardless of the language used to
implement the client, a shared library must be
built and installed. The KTL service will not
be visible on any computer that does not have
this library installed. Once the description of
the KTL XML is complete, and MUSIC message
numbers have been defined for the new service,
the creation of the KTL shared library is com-
pletely automated. A standard set of Makefiles
are copied in, along with a small set of .h and .c

files, and the client library is ready to be com-
piled and installed.

5.2 Transient clients

For KTL clients that are invoked for a discrete
purpose, the use of synchronous reads and writes
is common. For example, you may have a script
that moves all of the motor-controlled stages in
a spectrograph to a predefined set of known po-
sitions: that script may perform some initial
preparedness-checking via synchronous reads,
and then use synchronous writes to perform the
modifications; when all of these calls complete,
the script continues to completion.

5.3 Persistent clients

For KTL clients that persist, such as user in-
terfaces, the use of broadcast reads and asyn-
chronous writes tends to be more common.
Leveraging broadcast reads allows a persistent
client to continually update its local notion of
a keyword value without blocking on a syn-
chronous request. Similarly, using asynchronous
writes allows a persistent client to remain re-
sponsive to new input, while the KTL call is
processed in the background.

Persistent clients should also be careful to han-
dle the absence or disappearance of a service’s
dispatcher(s) while the client is running. Asyn-
chronous broadcasts of keyword values will re-
sume when the dispatcher is restored, but their
initial broadcasts may diverge strongly from the
last known value for those keywords. By mon-
itoring heartbeat keywords, a persistent client
can alter its behavior when a dispatcher is not
available; a GUI client may display a splash
screen indicating the lack of an available dis-
patcher, or it may disable synchronous actions,
such as write operations to keyword values.

5

5.4 Example clients

With the relevant KTL client library already in-
stalled, a simple transient client may be as short
as the following:

#!/bin/sh

Move three stages in service ’apfmot’

to predefined positions:

modify -s apfmot ADCRAW=’0’ &

modify -s apfmot DECKERVAL=’20.002’ &

modify -s apfmot IODINERAW=’13311’ &

Wait for all backgrounded modify calls

to complete before exiting.

wait

A relatively complex example of a transient
client, show re-written in Python, is present at
the following location:

cvs/kroot/ktl/keyword/python/examples

An example of a persistent client written in C
is present here:

cvs/kroot/ktl/kui/cshow

An example of a persistent GUI client written
in Python is present here:

cvs/lroot/kast100k/gui/kast_gui.sin

6

